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ABSTKACT

Scale effects in cavitating flow are considered fur the so-called
limited cavitation flow regime. The effects on cavitation scaling of nu-
clei and digssolved air in ordinary water are considered. Previous work
by the author is summarized and a theoretical study is made to gain in-
sight into the relationshipa that must held between th: parameters which
affect the inception of cavitaticn. A simplified theory gives only rough
qualiative agreement with experime-’

PART I
INITIAL CONSIDERATIONS

Introduction

: *
The present wo:'. *: ¢ _:qud) to the author's - -~eliminary report

on the effects of body size 2nd free ..ream velaci®y -'non cavitation on an
immersed body. Tue nomenclature of this report will follow that used

in the praliminary pape: .

It is useful to divide the flow of a lir uu azouud . - 2'id body into
three regimeslwhich are calle no'.‘mav;-.w' To.. ll~wiwe 1 cavitatien,

and full cavity flow, respectiv '-. Th > seeliny Yews ki, control the

behavior of flows in the no.'u,avu ooz cegitae 2.2 & zm wvoell known for
some time. For full cavity fl  -s, Reizn= 4t“ %2 gi= > inat the essen-
tial quantity fcr determining the flow geometry is the - <.iation number,

= (p Pv)/z A Z. where p_ and V  are the free stream valucs of the

static pressure and velocity, respectl el ~=4 ~ _is . liquid density.
Reichardt takes for P, *the samn of 7') siaa pressvrsc .:ttan the cavity.
ir the present work, P, will denote only the liquid vapc: pressure.
However, for the limited cavitation flow regirmme there is a definite lack
of knowledge concerning the effects of body size, flow velocity, and dis-
solved air content upon the develonr:2ant of cavitation. :n fact, it is now
customary to employ the cavitation number K as the s»ly significant

é parameter for describing all inviscid cavitating flswws. it is shown in

this paper by both theoretica: and experimental means that the use of

*See bibliography on pag. 38.
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only the cavitation number for limited cavitation is an unj'ustiﬁed simplifi-
cation.

The objsct of this study is to determine the behavior of limited cavi-
tatior. on a given body shape placed in a rectilinear flow of constant free
strexm velocity. Such a flow is approximated in the test section of a
water tunnel where the free streanms velocity, free stream static pressure,
and the amount of air dissolved in the water can be controlled as reguired.
If one considers only this elementary flow configuration, very simple ex-
pecirents® can uc performed. For such experiments, the spatial pres-
sure distributions on the body surface will be known. From these kncwn
pressure distributions and the free stream velocity. pressure-time
relationships can bz calculated for a particle moviag along the body sur-
face with the liquid. From such pressure-time functions, one can study
analytically the behavior of incipient cavitation with changing body scales.

In this report such calculations are made and compared with experiment.

Possible Origin of Cavitation

For ordinary untreated water it will be assumed that there are nuclei

countaining air or water vapor, or both, which are stabilized on small,
solid particles in the liquid. It is held thatboiling or cavitation must be
initiated from such nuclei, since their absencz would mean that very large
surface tension forces must be overcome before cavitation can start. The
slight tension under which cavitation normally occurs lends plausibility to
arguments favoring the existence of the nuclei. If one supposes that cavi-
tation originates from such small nuclei, then it must take them an ap-
preciable time to grow to a macroscopic size. It is clear that this growth
time must be dependent upon the pressure to which the nuclei are subjected.

for a constant frce stream pressure and velocity only the scale of the
irnmersed body is changed, the liquid fiow mnay show correspondiag changes
in the cavitation due to changes in the time available for bubble growth.
Under steady, or almost steady, conditions, ordinary untreated water has
a definite boiling point and has no appreciable tensile strength. Such
water will, however, withstand tensions if it is subjected to transient low
pressures of short duration. For water flowing around a solid body, such

short duration transient tensions can be produced on the water as it flows

*The experiments performed for this study are described in Ref. i.
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by the body surface. It {s possible that the differences in the transient ten-
sions produced by changes in body length and free stream velocity can ac-
count for corresponding differences in the state of cavitation. It is the
study of nucleus response under these transient pressure conditions that

is of primary concern here.

Summary of Previous Results

In the preliminary report, the assumption that cavitation starts from
small nuclei in the liquid gives conditions for dynamically similar bubble
growths. it was found that no useful sc.’ng laws for limirzd cavitation can
be obtained trom sucih sirailarity arguments. In fact, the similarity calcu-
lations indicated that the cavitation number, K, it not the significant param-
eter for defining the state of the flow in the limited cavitation flow regime,
and that for {i..:s of the same liquid around geometrically similar bodies
dynamically similax growths of individual bubbles cannot be expected to
obtain.

The effects of body size on cavitation were then investigated experi-
mentally for two fairilics of simple shapers in a steady rectilinear flow.

: The first experimencs were performed on a family of 12% thick symmetri
cal Joukowski hydrofoils of constant chord which spanred the Higk Speed

- Water Tunnel te<* s=ctic~. Next, R. W. I’.ermccn3 supplied some experi-
mental resulcs ior a seric.. of rignt cir _ular cylinders with hemispherical

noses in Ydally syi..metric {iow.

The important results oi thc experiments may be summarized as
follows: First, it was observed in connection with the high-speed motion
picture studies that different cavitation numnbers were required to obtain
similar cavitation development on bodies of diffcrent size. This bebavior
was ther confirmed at one frce stream velocity for a range of cavitatica

L numpers. Second, it was found that the cavitation number for the in-

ception of cavitation increa sed with free stream velocity and, in certain
instances, for constant velocity, the incipient cavitation number was found

| to incrcase with the size of the body.

6 e s et e .
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PART II uoia
THIEORETICAL INVESTIGA TIONS Ay2
nuie

Introduction to Theory

4

The experimental results summarized above show that the cavitation
number for incipient cavitation exhibits systematic changes with variations
in the free-stream velocity, and that for some conditions the incipient
cavitation number at constant free~stream velocity changes with the scale
of the body. It is the purpose of this ae~*ic.. to investigats the conditions
for incipient cavitation by analytical means so tha: more precise ideas can
be obtained about the rclationships between the parameters which influence
the behavior of the cavitation.

The question of how a bubble grows from its original smali nucleus
to a macroszopic size is a dynamic problem, since the observed varia-
tions in the inception of cavitation are to be ascribed to differences in the
transient tensions on the water produced by changes in body length and free
streawn velocity. The equation of motion for a spherical bubble of radius
R(t) in an unlimited incompressible inviscid liquid is

am%az = [p(R) - P(t)]/r. : (1)

where p is the liquid density, p(R) is the liqnid pressure at the bubble
wall, and P(t) is thc external pressure field in the liquid far from the
bubble. The superscrihed dots, as usual, stand for differentiations with
respect to time. Let ¢ be the surface tensior of water, P, the vapor
pressure corresponding to the temperature of the liquia, and P, the
initial air pressure within the butble before any growth from its initial
size Ro has occurred. If the tLubble is assumed to expand under iso-

thermal conditions, then
3

2¢ Ro
P(R) = p, == + pa(—) . {2)
R R

P(t) will be determined by the fiow over the solid body.

Basic Assumptions and Definitions

Before proceeding with the detailed formulation of the theory, a

statement of the basic assum,tion: underlying the whcle anzlysis is re-
ruired.

B RS
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F‘Hirst, viscovsy 2ffects are entirely neglected in the present work.
For example, it is known that the minimum pres sures in the liquid occur
on the immersed body. In fact, the presaures dettcese slightly as one
proceeds through the boundary layer toward the body.4r In view of the very
small huéltus size it would seem that at least in the initial stages of bub-
Ble growth the phcnomena might be restricted entirely to the boundary
layer. The consideration cf boundary layer effects requires further experi-
mental information which is now being accumulated. The present discus-

sion will not take them into account.

[75]

ssonl. the .iteraction between the flow around ti. - ~ - nziag bublle
and the flow of the liquid around the immersed boay is not considered.’
Thus, the motion of the expanding bubble will be treated as though the
liquid is infinite in 21l directions and the velccity and pressure relation-
ships on the model will ignore the presence of cavitation. The effect of
the flow around the body is related to the bubble growth through the P(t)

term in the equation of motion for the bubble.

Third, the bubble is assumed to move with the zinid. For the very
small bubbles considered here, tucyant forces ar: small and the viscous
drag will be high so that any relative motion botwcen the bubble and the

water will be very smali.
Fourth, the bubbles are assumed to be spherical.

In this studv if i< =vwndo-~=d that cavitation is initiated from 5 ..: °
nuclci'which contain zir or water vapor, or both, stabilized on small,
sol'd particles in the liquid. In the noncavitating flow regime it is as-
sumed that the nuclei do not have an opportunity to grow into bubbles of
macroscopic or visible sizc. The difference, then, between the nor-
cavitating and cavitating flow regimes is that in the latter, the nuclei are
expcsed to 2 pressure environment favorable to bubble growth for a period
sufficient to allow for the appearance of macroscopic bubbles. The ap -
pearance of macroscopic bubble: “c¢pends upon the response of the nuclei
to the transient low pressure created by the flow of water «#round thc body.
This bubble growth problem will be determined by two condiiions. First,
the infﬁa'i conditions f{(o).f 0 and R(0) = R, will be prescribed.

*It seems probtable that the nuclei in a liquid have a range of sizes,
but it will be assumed here that all nuclei are of equal effective radius R .
Their size will be estimated in = subse juen? section.
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Second, the pressure-time reiationship or "forcing funciion' which acts
on the nuclei and promotes their 3Jrowth is prescribecd if one knows the
pressure distribution around the immersed body, the body size, the

free stream velocity, and the free stream static pressure, This simple
determination of the forcing function is a conzequénce of the fundamental
assumptioas listed above.

For a given flow situation, the time available for bubble growth is
fixed by the size of the solid@ body and the free stream velocity. Incipient
cavitaticn Wit ve said to exs«t i a2 nucleus grown from its initial radius
Il‘.o to a radius of one millimeter during the time it is exposed tc the low
pressurc which favors growth. This value for the final bubble radius
was selected because a bubble of one millimeter is visible to the unaided
eye and this arbitrary bubble sizc is of the same order of magnitude as
the bubbles of visible incipient cavitation on bodies ir the water tunnel.
Using this cxpefimentally derived cstimate, one can now ask:; Givena
fixed time for growth, determincd by the free stream velocity and body
size, what will be the frce strcam static pressure p_ (and hence K) at
which the final bubble radius will be one millimeter ?

Etability of Gas Nuclai

For practically all cases of technical interest, the water will con-
tain dissolved air. Accordingly, the nuclei will contain air ag well as
water vapor. However, if surface tension forces act on these small
bubbles, the air will be driven from tife nuclei into solution with the sur-
rounding wa.ter.6 On thc other hand, a stable nucleus can exist if air or
vapor bubbles aie attached to small solid particles in the liquid. In this
case the effective surface tension must be zero. Therefore, if the effective
surface tension is initially zero, the nuclei can exist indefinitely, and by
Henry's Law7 the initial air pressure in the gas pocket is proportional to
the concentration of air dissolved in the water. As the bubble grows from
its inigial effective radius R, the swface tension will increase to the full
value 2¢/R. The required behavior of the surface tension may be approxi-
mated by Py = 2S(R, ¢ )/R where the "'surface tension law', S(R,s ), is
characterized by S{R,,0) = 0 and S(Rl.o') = o. Let R, be that bubble
radius at which the surface tension law first achieves. its full value and

put R, = nRo. The simplest assumption which will approximate the

e e e 0
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complex variation of the surface tension law with bubble giowth is that
S(R,¥ ) is a linear function of R. Then S = {(R-R O)U/Ro(n -1) for
R = R = nR and S = ¢ when R ax nR . If one puts r = R/Ro. then
the surface tension law can be written in the form

r?x'-l

n—.—rc » l‘r‘n »

S = (3)
o », Tamn e

it must he borne in mind that the surface tension law defined above is
in a swnne Gy Atiempt to account for an ave.aye bebhavior of a large numter
of nuclei of many possible initial sizes. Compared with the atomic or
molecular scale, the nuclei are macroscopic structures and hence the laws
of surface tension for macroscopic systems are apolicable. It has been
argued that in order that such systems may exist in a stable state it is
necessary to add a solid phase to the gas-water system, and this has re-
sulted in the introduction of another parameter, namely, the slope, 1/n,
of the surface tension law. To ascribe aa average behavior to such a large
number of nuclei with many possible injtial sizes is reasonabie beczuse
experiments show that the zone of gavitation numbers at which cavitation
starts is very narrow. Thus it is possible to assign a definite value of the

cavitation number for the inception of cavitation for a given flow situation.

Primary Parameters and Pressure-Time Relationships

The problem then is to study the behavior of the ''average" nucleus
in the transient pressure regions caused by the flow of the nuclei-containing
water around submerged bodies of various sizes at various flow velocities.
Thus, the relationships between several parameters must be studied in
order to obtain approximate quantitative results which may then be used
to guide further experimental work. In particular, one must study the ef-
fects upon incipient cavitation of bubble air content, P, of the nucleus
size, K,» and of changes in the slope of the surface tension law (1/n).
Furthermore, estimates for the initial radius will be found ts depend upon
the nucleus air content and the slope of thc surface tension law, so that
all of these factors are interrelated. However, it will be possible to
make some theoretical conclusions about the effects of air content and

surface tension law slope. To test such findings more detailed experimental




-8.

results are required. Unfortunately, there are at present almost no rz-
liable experimental data for the efiect of dissolved air content thon the
inception of cavitation. Studies are fow under way for determination of
the effect of dissolved air contert oa incipient cavitation.

With regard to pressure-time relationships, no exact account will
be taken of the many pressure distributions which can arise from all of
the various body shapes that one may wish to consider in a liquid flow.
However, the general pressure change, first falling and then rising,
ccmmon to all such bodies, will be epy~--~mated by two parabola-like
curves joined at the point of minimum pressure. The term ‘'parabola-
like' i3 used beczusc the actual functions used will be parabolic in time
and the resulting spatial pressure distributions will differ slightly from
the true parabolic shape. Two curves joined at the minimum pressure
point are used so that actual pressure distributions, which are seldom
symmetrical about the minimum pressure point, can be more closely
matched. It is the generzl qualitative behavior of the many possible
pressure distributions that is of importance here. No attempt will be
made to find an exact forcing function for any gpecific body shape.

Next, certain conditions will be determined which will enable the
“parabolic' pressure distribution to be replaced by a dynamically equiva-~
lent step function pressure distribution. The detailed numerical integra -
tions of the equation of motion for the bubble will be made by using this
turtaer simpuification. Two distinct advantages are gained by the use of
the step function. First, it turns cut that for a given n, or surface ten-
sion law slope, if the parabolic approximation is used, a three parameter
family of solutions for Eq. (1) must be found. However, when the step
function pressurc distribution is used, only a two parameter family of
solutions is required. ‘Sei:ond, the use of the equivalent step function
allows one to find certain important relationships between the primary
parameters involved in the problem. These relationships are n.t
readily determined if the pressure is not constant during some time inter-

val.
It was mentioned above that the only connection between the bubble

growth and the liquid flow over the body is the choice of P(t) in the equa-
tion of motion for the bubble wzll. For the step function pressure distri-
bution it is evident that P(t) can be written as




fpo . t<o,
P(t) = p L2 (4)
po"vao a , ta0,

where P, and Vo are the free stream static pressure and velocity, re-
spectively, p is the liquid density, and ‘a is the pressure coefficient in
the low prcasure region. Fig. 1

shows the step function pressure
0 Time, t law.

¢ i~ 1y veT.»mbrrzd tha,
the Buihlc iz nssumed to grow
e isothermally, aad if account is
taken of Eqs. (3) and (4), the
equation of motion (Eq. 1)

Pressure ccefficient
pt

Fig. 1 becomes

, 3
R S(Ro.’)
3 .2 1 | 2
. RR + 3R s pv+pa(?°)—2 = - P t3zpV, 2 » t >0, (5)

! : The initial conditions are R(0) = R and R(0) = 0.

Estimates for Initial Effective Bubble Radius

|

1

’ From inspection of Eqs. (3) and (5) one sees that the forces tending

‘ to retard the bubble growth are a maximum at R = nRo. If the bubble
grows in such a2 manner that R just reaches nR with zero velocity, it

| turne out that the time required for such growth will be infinite and

| cavitation will not occur. On the cther hand, if the forces reach equi-

| librium when R = nR S he motion will have considerable momentum, and

the bubble growth will be little influenced by the retarding forces. Cavi-

tation will then be well started. One can use this condition of force equi-

librium together with experimental values for cavitating flow to obtain an

estimate of the initial radius Ro’ Thus, setting the right hand side of

Eq. (5) equal to zero, one finds that for R = nR

¥4 4

(a - K) V' + - = 0,
A

I
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BUBBLE SURFACE TENSION LAW PMARAMETER, N,

Fig. 2 ~ E: ™ates for the initial effective bubble radius under
’ various dissolved air and surface tension law conditions

where K is the cavitation number, (po - pv)/(l/z pr). Experimental values
of K and Vo were taken from the data for incipient cavitation number for

‘ : the Joukowski hydrofoilz;,l and curves of Ro versus n for various air con-
tents, P,» Were calculated. The results are shown in Fig. 2. (V°= 30 fps =

914 cm/sec, K = 0.30, ¢ = 70 dynes/cm, a = 0.53). Inspection of the

Ro vs. n curves shows that except for the case of no dissolved air in the

‘_ water, the variations in the initial radius with the surface tension law slope

| are not large. Further, since R, is given by

20
n(a - K)(1/2 pV?) + pa/nZ

i o
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an underestimate of the pressure difference (a ~ K) resuits in an over-
estimate of R. In using experimental values of {a - K) for incipiznt
cavitation, one must recognize that such an underestimate of (a - K) is
being made. The chief value of the calculations is that they show that an
initial radius of the order of 10 % cm is reasonable (Fig. 2).

Critical Conditions for Cavitation

As was mentioned above, the forces tending to retard bubble growth
reach a2 maximum at R =n Ro. However, if the bubbie motion acquires
enough momentum before rcaching this point, the bubhie will grov hroaugh
this critical region even if the net force acting on the bubbl: {n this region
tends to collapse it. On the other hand, for certain values of the coef-
ficients in the equation of motion (5), the small radius n R will net be
greatly exceeded, and by deifinition the condition for incipient cavitation
will not be fulfilled. In this section relationships will be derived hetween
these coefficients which will define the threshold of visible cavitaticn.

Before deriving the relationships between the coefficients, the

equation of motion will be rewritten in dimensionless form. If one puts

B = R(t)/Ro and T =t V2o /p R°3 Eq. (5) becomes

r
r-1
dz s ) =T rs<=n ,
r r ¥ {
r— + —] = a ¢ - (6)
dt 2 (d'r) :3 1
"r' , r=n ,
L
where the '"bubble driving parameter' a is given by
1 2 2
P,"P. +9pPV_a R _pV
@ = LV o Z" % = (a-K) o” o (7)
20/R 4o

and the "'air content parameter" Y is

Pa

— 8
Z(!'/Ro (8)

P4
b
L]
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The initial conditions are then
r(oy=1, 329 . o . (9)
dr
By recognizing that
cdr 3(_d_r)z _ 1 4 r3(£l£)
d'rz Z dv Zrz dr dr

cac #zn wrlts ke fracintegral of Ea.lb)as

1 3 2 ’
(-r-l_r-l) r&n
1 3far¥_ e, 3, | CE A 2 0
2r—-=§(r-)+¥nr-{ (10)
dT 2 2
_r__n+n+l e
3 ‘—"’—'—6 ’ ’
-

where the initial conditions, Eq. (9), have been used and the two integrals
have been matched at r = n. Equation (10) simply states that the change
in th2 kinetic energy during the expansion is equal to the work done in the
course of the motion. If one lets W(r) represent the terms on the right-
hand side of Eq. 10, then for small enough values of the bubble driving
parameter, a , the function W(r) is
very near a cubic polynomial, as
shown schematically in Fig. 3. The

value of r, for which W has its iso-

Work done in growth
w

lated minimum, will be called -
It can be shown that for n greater
\,/ than ! the minimum of W occurs at
/ a value of r, greater than n. Since
0 1 n the kinetic encrgy is zero for r = 1,

Dimensionless radius, r 4 y4)) again be zero at the minimum

Fig. 3 of W if Wyin = 0. It can also be
shown that the time required for the
bubble to grow to the value T which corresponds to a zero minimum of
W, is logarithmically infinite. Thus, if the bubble driving parameter,a ,
and the bubble air content parameter, Y, are chosen in such a way that

Wmin = 0, then cavitation will not occur under any circumsiance. One may
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call such values of the bubble driving parameter, a , and the bubble air
content parameter, Y, critical values. These critical values are denoted
by a. and Yc. respectively. A relationship between the critical values
a, and Y  will now be found from the conditions W(r,) =0 and
dW(rl)/dr = 0.

From Eq.(10) the minimum conditions give

o 3 e ey i'lz nz+n+l
W(rl)':—3--(:'1-1)+‘(<:3uz‘-l == - =0
- C
and
dw(r,) Y
dr rl

Because the minimum occaurs for r,>n, only the part of the inte-
gral (10) for r 3 n iz cequired. If r, is regarded as a fixed parameter,
a. and Yc are given in the parametric form,

rlZ 2 n2+n+l
T "hlan - —y—
a = T =, (11)
.2 r- -1
1 3
- in r1
3
_ 2 3
and Yc S x'l - ccrl

The minimum value of r corresponds to Vo = 0 and the root of 0 =
:'1Z - ocrlz of physical significance is r= l/oc. Substitution of this re-
sult for r)into a_ (Eq. 11) gives

2 2
ad -2 tn¥l o 220, v =0. (12)
[ o4 z Cc C *

Equation (12) has one real root for a.: When a. is real, it is expedient
to solve for n in terms of a.- Since n =1, Eq. (12) gives for the posi-

tive root

) —
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Fig. 4 - The critical conditions for the occurrence of cavitation

Taking values of a. from 0.1 to 1.0, one finds the corrssponding values
of n and r,. These results were plotted. For various fixed values of the
surface tension slope number, n, the values of r and a, for Yc = 0
were taken from this curve and then larger values of r, were selected to
compute a and Ye from Eqs. (11). The results of these computations are
graphically presented in Fig. 4. These curves of the critical driving
parameter, a., asa function of the critical air-content parameter, Yc ’
are the loci of points for which the time required for a bubble to grow
from its initial size to a size near nR: (or larger) is infinite. For
example, if for a given slope (1/n) of the surface tension law, a value of

l.Actv.nl.ly. the growth is from r=1 to r = rlh o with r1<< 10n.
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a greater than a. is chosen at a fixed value of the air content parameter,
Y, a finite time will be required for a bubble to reach a definite radius.
Further, if the slope of the suriface tension curve is increased (n decreased)
the bubble growth time increases without limit as a approaches .-

Numerical Calculations wi*th the Step Function Pressure Law

In order that definite numerical calculations can be inads, values of
n and R must be chosen. If the original bubble is stabilized on only a
portion of an unwetted solid particle, it seems plausiblc that the bubble
must grow to several times its initial size before the surtii o ‘cnsion law
reaches its full value 0. For the present calcutai.cis @ value of 5 will
be taken for the parameter, n, in the surface tension law. If one tukes
account of the overestimate contained in the curves of Ro versus n
(Fig. 2), a value for the initial effective radius, R_, of 2 x 10"% cm.

seems reasonable.

In accordance with the definition of incipient cavitation given above,
the bubble must grow to 2 macroscopic size of R = 1 iaillimeter. The
total range of r, (= R(t),/Ro) will then be from i to 500. Tkec problem of
determining the condition for incipient cavitation is now reduced to the
following question. What time interval, as a function of the bubble-
driving parameter a and the bubble air-content parameter Y is required
for the bubble to recach a radius which is 500 times its initial value? To

answer this question one must find a two-parameter family of solutions

“of £q. (10) of the form T = F(a,Y). The dimensionless time parameter, 1,

is a function of the body leagth, free stream velocity, and cavitation number.
The air content parameter, Y, will be given and a , the bubble-driving
parameter, is a function of the cavitation number and free stream velocity.
Then if 1 = F(a, Y) is known, a trial and error procedure will give the in-

cipient cavitation number when the free stream velocity is known.

Equation (10) is easily reduced to quadratures, so that the dimension-

less time T is given by




.16~

T =f5 r3/z dr
1 \/%-a(r3-l)+2Y lnr-nz.l(igl 'rzz.l)
(13)
rSOO l.3/2 o

+j P el
2 2

2 3 . r n4+n+l

5 Jga(r l)+2Ylnr_ﬂ2(T 2 )

The two integrals arise because cf thz change in the surface tension law
at r=r =5, Since the variations in v are required for small changes in
a and Vv, s;.proxirhate representations for Eq. (13) will be limited in value
for those cases where a is near the critical bubble-driving paramecter a .
In any event, numerical integrations have to be precise for the first inte-
gral in Eq. (13).

For the range of the air content parameter, Y ,from 0 to 1.8, with
corresponding values of the bubble-driving parameter, a, from 0.145 to
0.230, ninety-eight integrations of Eq. {(i3) were carried out on an 1. B. M.
calculator. From these results the functional relationship, t = F(a, Y),
represented by Eq. (13) was plotted as in Fig. 5. Tabulated data, from
which the figure was made, are given in Table I.

After the above trial and error calculations for incipient cavitation
number versus velocity have been made for different values of the air
content parameter Y, comparisons between experimental results and the
calculations for the given shape could be used to obtain a measure of the
success with which the surface tension law parameter, n, was chosen.

It will be noticed from Fig. 4, that the slopes of the curves for critical
bubble -driving parameter, a., versus the critical bubble air content
parameter, Yc. are stecpest for low values of the surface tension law
parameter. Thus, the cavitation number for incipient cavitation will be
smaller for steeper slopes of the surface tension law, S(R,c), than it will
for a surface tension law with more gradual slove (large n). If sufficiently
reliable data are available, a comparison with the calculated curves for
incipient cavitation will suggest a better choice for the effective surface
tension law parametzcr, n. Because there are almost no reliable data at

this time, thcse alterations of the caiculations will not be made here.
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Properties of the "Parabolic' Pressure Function

As noted previously, the step function results will be reiated to the
growth of a bubble under a more realistic pressure -time forcing function.
The important general features of many such actual forcing tunctions can
be qualitatively represented Sy two functions which are parabolic ia time.
One function which decreases from Cp: 0 to Cp: -b and another func-
tion which increases from Cpa -b to sz 0 will be employed. Two
functions are used because the pressure distributions around actual bodies
are seldom syr-.: :trical in the streamwise direction. Fig. 6 shows the
parabolic pressure distribution. The required resuits for the "parabolic'

" pressure distribution will now be obtained.

Decreasing part, Oa=x Cpé -b:

The equation of a time parabola which decreases from CP =0 to

Cp= =% in a time interval T, may be written as

2
t (L
c ) = -b |22 ( ) : (14)

where t is ary time in the interval 0=t <T
(Fig. 6). From the Bernoulli equation dx/dt =
V=vV,Yl- Cp(x) , where x is the distance
along the stream line adjacent to the body.
Under the conditions x = x{t), with dx/dt ¥ 0
one may write dx/dt = Vo m If
x{0) = 0 and x(T) = £;, one obtains

Fig. 6 - The time-parabolic
pressure law

1
1) \/l+b t 2 ot
—— I -(1-<) d(f)
TVo Vb -[ ’
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When Cp= -~ K, that is, the pressure coefficient on the body is equal to
minus the cavitation number for the flow, the pressure in the water around
the bubble is equal to the vapor pressure of the water. Inspection of Eq.
(5) shows that the bubble can not start to expand until it has reached a point
on the model where C_ = =~ K. The region for which C,= - K will be
called the region or 'favorable environment' for bubble growth. Thus the
time that is of concern here is the time durirg which the bubble is in a
favorable environment. The value of (t/T) for which C,= - K is ob-
tained directly from Eq. (14). If t, is the required value of the time,
thea

b-K

t
l = l = A
T VT
but the time interval at, spent by the bubble in the favorable environ-

ment is (T - tl). Hence Atl:‘rv(b - K)/b, or substituting for T one

finds

2 4 Vb-K
t, = ) (16)

L v (Ve e s B

The relationship x = x(t) can be found by suitably altering the limits of
integration in the integral leading to Eq. (15). If Eq. (15) is solved for f,
and divided into the result for x = x(t), one obtains

(I-T) L4160 -(l-—) P i sm (l -,r)\/

. S " (17)
! 1 1+b . -1 b
1 +b _.

- + -

b 5 1+0

Increasing part, -b < Cgé C:

For the portion of the pressure distribution downstream from the

minimum pressure pcint, one can write

C_(t) —-—zb (L 12 121 18
t) = — - - - ,
P (m -1} \T ) i )_J e




where | £ -.tr-é =. Thus, Cp('l‘) = =b and Cp(m'l‘.) = 0. In a manner
similar to that used in obtaining Eq. (15), the analogous result

21
(m=-1)T = e , (19)

vo(\/:_«»lﬂ sin’ \/:;)

is obtained. Here [, is the distance along the stream line next to the

body from the point where Cp = = b to the point where again Cp = 0. and
T is given by Eq. (15). The time t, at which Cp= - K is obtained from
Eq. (18)

¢ b-X
2 -1 2 (m-1)
T b

The pericd spent by the bubble in the favorable environment for this por-
tion of the pressure distribution is given by at, = (tz - T). Substitution
for (m -1)T from Eq. (19) yeilds

21, b - K)
‘ : (20)
v, [b + (1 +b) sin”! T?'F]

As before, the space-time relationship can be found in a manner similar
to that employed in deriving Eq. (17). Thus,

)
t 4 t
’f-l)\/l b T'“) 1+b -1(‘1"")” b
x (m-l *+5 -(,\m-l * *5 i T+§ (21)
!
2 f% N 1+)b sin.l'( b

where x is measured along the stream line from the point for which

Atz =

Cp: -b. From Eq. (15) the expression for T can be put into Eq. (19) to
find m. This substitution gives

!
(m=1) = 2 . (22)
1
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The "parabolic" curves are compared with the Joukowski and the '"Hemis-
phere" experimental pressure distributions in Figs. 8 and 10. Equations
(16) and (20) can be added to find the total time, at = at) + at,, that a
bubble cpends in the whole region of favorable environment, and one {inds

z(lluz) ‘\/b- K

At = (23)
vo(\f§+ (1+b)sin“'\/r‘+’-.g)

It is this vaiue of the time At which d>termincs the dimensionless time .
For a given pressure distribution, ‘l’ 1?.’ and b are known quantities and
Vo. the free stream velocity, will be given so that K is the only unknown

factor required to find At or 7.

Dynamic Equivalence between the Step and '"Parabolic' Pressure Laws

The preceding preliminary calculations nov.v make it possible to ap-
proximate the relationship which must obtain between the idealized step
function pressure distribution and the more realistic "parabola-like"
pressure distribution if the essential features of the bubble growths are
to be the same in both cases. The matching will consist of two parts.
First, the time spent by the bubble in the low pressure region will be taken
to be the same for both the step {unction and the parabolic pressure laws.
Second, the equation of motion (1) will be integrated in closed form by ap-
proximate means fo: both the step function and the parabolic pressure
laws. The tw0 approximate bubble histories will be said to be dynamicaily
equivalent when the total bubble growths under the two pressure laws are
equal. These two conditions will result in approximations of the required

relationships between the step and parabolic pressure functions.

The first point of comparison for the two pressure laws is the re-
lationship between the time intervals during which the nucleus is expcied
to the favorable environment in each case. It will be specified that the
time spent by the bubble in the favorable invironment shall be the same
ior both the step function pressure law and the ''parabeolic' pressure dis-
tribution. In both instances the frce stream velocity, Vo will be identi-

cal. From £q. (4), the pressure coefficient for the pressure step is




0 fort <0, ¢cr x <0,
C. = . (24)

-a fortem 0, or x & O,

If the bubble is assumed to grow in an interval 0 £ x & \ then the same
A

Vo V1+a
total time during which the bubble is exposed to the low pressure and \ is

reasoning which gave Eq. (15) gives t = » where At is the

the distance along a strecam line traversed by the bubble in the time at.
Equating this result to the At of Eq. {23} gives

1} z(tl+zz) \/b-x
Visa Vo + (l+b)sin'l\/1%

If a relationship between a and b can bec found, then \ will be given in
terms of known quantities.

(25)

The second point of comparison is the requirement that the total
bubble growth in the time interval of favorable environment must be the
same for the two pressure functions. This requirement, which will result
in a relationship between a and b, will be called dynamical equivalence.
The a priori derivation of an exact condition for the dynamical equivalence
of the two cases is formidable in view of the fact that to obtain such a pre-
cise result the equation of motion (1) must be integrated in exact analytical
form. It will bc worthwhile to use an approximate method of integration
due t¢ M. S. Plesset.8 Plesset's method, while lacking rigorous justi-
fication, has been shown to give results in close agreement with precise
numerical results if the right-hand side of thc dynamical Eq. (1) is a
function which increases exponentially with time. In ihis instance,
Plegset's method approximated the exact numerical results within 0. 3%
for sufficiently large values of the bubble growth time. On the other hand,
if the pressure is constant, it carn be shown that this approximation will
give the final bubble radius with an error of about 5%.* Thus, if the right-

hand side of the equation of motion, Eq. (1), is a mcnotonic function of

*This comparison approximates the effect of surface tension for bubbles
growing through the specified size range because, when surface tension and
air conient are negligible, Plesset's methed is exact. This comparison was
made for bubbles with surface tension and initial intcrnal air pressure.
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time, it is evident that a suitable approximation for the final bubble size
will result. Plesset's method is based on the supposition that the right-
hand side of the equation of motion is a monotonic function of time. It is
unfortunate that this condition will not be entirely satisficd here. After
obtaining the required approximate result, it will be used to define a pair
of dynamically equivalent pressure distributions so that rumerical inte~
grations can bc performed to test the reasonableness of the approximate
method.

The equations of motion applied to each case differ only in the form
of the forcing function on the right-hand side, because in one case a step
function is taken while in the other case a 'parabolic'' dependence is as-
sumed. Thus, it seems reasonable that in comparing thc behavior in the
two cases, one can discard the surface tension and air content terms.
This approximation may be partially justified by recognition of the fact
that both the surface tension and the air content terms decrcase very

rapidly as the bubble grows. Thus Eq. {1) can be written in the form

3 .2

RR + = R® = g(v , (26)
2

where g(t) is given for the step function case by

1,2
-K) , <o,
zVo (=K) t (27)

1
r4

g{t) =

vi(a-x), '=0

:
i

and for the parabolic casc by

2 7
g(t) = %vozb [25-5 - (1-.%)] , |

with (28)

A aas

Equation (28) accounts for only the portion of the parabolic pressure

darakbi S5 Sk s Nindaes o £ (o oy

curve lying upstream irom the minimum preessure poiat which is in the re-
gicn of favorable environment. The growth in the second portion of the

parabolic pressure curve will be accounted for by approximating the slope

T T

of the growth cu-ve at the minimum pressure poiat and multiplying this
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slope by the time interval of favorable environment at, (Eq. 20).
Plesset's approximate integration method is based upon the condi-
tion ‘hat in Eq. (26) g(t) is a function that does not permit the acceicration
of the bubble wall R to become negative; then
RR = g(t) - %R’; 0. (29)
Consequently:.

Rz.‘. % g(t) , or

_ (30)
R = T 8(t) .

Integration of (30) gives

t
2
R - Roéjt;\/gg(&) a (31)

where R _ is the radius at the initial time t . Now define a function o(t)

such that
t
R - R°=o(t)[\/§s(e) dg =9 () 1(t) . (32)

0

Because of Eq. (31), the function ¢(t) is of bounded variation:
N

0 & oft) <1 . (33)

Equation (32) is a formal solution to Eq. (26). Accordingly, substitution
of (32) into Eq. (26) gives the exact differential equation,

(R_+ ¢1) (91+2pi+o0) + ;_-(q"ui(p)z - %i"‘ . (34)
L.quation (34) will now be approximated with the assumptions that
PI+201 << of ,
ol <Kol ,
and R, Kol

A first approximation for ¢ is then given algebraically by Eq. /34).




Solving for ¢ vyields,

1

21
1+ ==
V 31

This result, together with Eq. (32), gives the required approximate inte-

¢ =s (35)

gration. In order that the parabolic case can be treated by means of the
linear extension outlined above, the derivative dP(t)/dt must be found. If one
takes account of the inequalities preceding Eq. (35) the derivative is
given by R &= ¢{. From the results following Fq. (19) at, =(t, = T) =
— 2 2
(m = 1) T (b - K)/b so that the lincar growth to be added is

b - K

R(T) at, =~ ei(m~-1)T
b

Hence the total growth in the parabolic case is

R-R_a o(T) [I(T) + (TN m - 1) T/ 2 ;K ] (36)

Substituting the equation for g(t) (Eq. 28) into the integral for i{t),

one finds,
t
TI'.'
I(t) = \/%-% Vozb[hi—l-(- - (1 - u)z] du ;
1 [B-K
-
or putting y = (1 = u) 1/ 2 ’
b-K
t b
(l'?)\/b-x
b - K)° Viez TV, . [(b -K)% *
1(t) ==TV, T l -yé dy = - 5 T -_2.

- - 2
v sin” (1 -pP\p2g + 0P Vetg Vimweg - p)
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Hence,

| 1) = -:-T vo\/ﬁ"?“;!’:lz (37)
From

_t),[B=K
I(t) = vo\/b_;'ls \/-—t?—(l-ﬁ-)z and f(t) = -- v°(l T) 3

b=-K\ T/ - i-B—_E-R(l-ff)z

it follows that,

H(T) =v, ";K and I(T) = 0 . (38)

From Eq. (38) and Eq. (35), ¢(T) = 1 so that R - R, Eq. (36),

becomes

2
R~R_m TV <1+m- )\/u (39)
° °\4 3b

for the parabolic case.

t
2 1 2 '
1(t) = 2 ly2a-k at (40)
5 \/3 2

Because the time spent in the favorable environment is the same in this
case as it is in the parabolic case, the time interval for Eq. (40) is equal
to the at of Eq. (23). It is casy to see that At = mT \/(b - K)/b so
that

I(at) = mVoT\/(i-Kg(:-K) . (41)

Inspection of Eq. (40) shows that I(t) = 0 so that ¢(t) = 1. For this case
Eq. (32) alone suffices to give the approximate integration required, and

hence

| R-R,amV,T \/(a-x;(:-xl (42)

The requirement for dynamical equivalence can be applied to Egs. (39) and
(42) to give

Bt g

o Vst g
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m Va - K w({-‘}m-l) JP-K . (43)

Thus, the relative shapes of the step and the parabolic pressure distribu-
tions are now specified by

= -~ (25)

]
. -1 b
V1+a Vb 4+ (1+b) sin \/lq»b

n/4 -1
Va-K = (_/__*_m_.)\/b -K (43)

m
and

(m-1) = lz/ll . (22)

The above matchiag conditions were checked for one case of incipi-
ent cavitation on the two inch Joukowski hydrofoil. From the trial and
.error calculations presented below (p. 29 ), it was found thit when the free
stream velocity is 16 meters per second the incipient cavitation number,
K, is 0.403, arnd hence the bubble-driving parameter, a, is 0.190 and
the dimensionless time, 1, is 1400. The equation of motion (1) was inte-
grated for the case where the air contcnt parameter, ¥, is 1.0 and the
P(t) term is composed of the parabolic lavs (16) and (20). The numerical
solution gives a bubble diameter of 2/3 wim. at the end of the specified
time interval. If the matching had been exact the final bubble diameter
would have been 2 mm. The two rcsults are comparalble, well within an
order of magnitude. Hence, one may corclude that the matching condition
(Eq. 43) between the step and parabolic pressure laws will give reasonable
results for the present application.

Scaling Laws for Incipient Cavitation at High Free Stream Velocity (V_—» o)

It is now possible to obtain a relationship for cavitation scale effect
for very large values of the velocity, V, As the free stream velocity,
Vo. becomes very large, the bubble-driving parameter, a , (see Eq. 7)

increases as Voz. From E% (23) it is clear that the time, At (and hence

T since T = At Zcr/p Ro ) decreases as l/Vo. Hence for a >> 1,




e dp

|

e S e ¢ . 4o

Eq. (13) can be approximated by

500
" \/if dr (44)
2a
1
2

2
R_pV w/4+m=1\ R pV
where a = (a =K) ———2u =( ) S . (b-K)

40 m 40

This result for a follows from Eqs. (7) and (43). From Eq. (23) tke rela-
tion,

2(4+14,) \[b-K 20

‘ T = ’
3
N .-1,, b PR
( Vo< b+(l+b) sin m ) o

will be used for T in Eq. (44). For geometrically similar bodies, {1, + lz)
will be some constant multiplied by the characteristic body length L. Using
this fact and substituting for T and a into Eq. (44), one finds

LYD-K o < . (45)

v Vo V (b - K) voz

where C is a constant. Suppose now that a given body running at very high

velocity has a characteristic length Lo and is found to have an incipient
cavitation number X . Then if another similar body in high speed flow has
length L and incipicnt cavitation number K, the relationship (b- Ko)/(b -K)
= L/Lo must hold. This last result can be written in the form

K L b L
K o L K L

o

subject to the condition that Vo the frec stream velocity, is very high.
Just how high the velocity Vo must be is determined from more detailed
calculations below. A plot of K/Ko versus L/Lo is given in Fig. 7 for
values of b/K_ from 1.0 to 2.0.

. ) 5 ) E . o — a3
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Fig. 7 - The scaling condition for incipient cavitation for
very large free siream: velocities (V —= )

Calculati: ¢ ~ for Incipient Cavitation on the Joukowski Hydrofoils

Caiculations for incipient cavitation on the Joukowski hydrofoils will
now be made by means of the procedures developed above. The relation-
ships which must be used for the numerical work are

" 2 2
c:(znn-l\ R, PV,
\  m / 40

(m-1) = 8,/8, ;

2+ 1)) \[o-x Ze
(\/—+(l+b) sin \/_) ;?03

and a graph of the function 1 = F(a, Y),

(b -K) ;

OIMENDIONLESS STREAMLING DISTANCES ALONG BODY.

ol Fig. 5. In order to find m, the experi-
PRST VISIBLE 71 mental pressure distritcticns for the
uvnmou—-f-‘,'
three Joukowsky hydrofoils were cor-
/ rected for tunnel blockage (1), and a
/ single curve was faired through the
points, as shown in Fig. fi. It was ob-
AN served experimentally that the first
K8 4811 visible cavitation on the hydrofoils
occurred at about 20% of the chord, c,
Fig. 8 from the point where the pressure
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and for the bubble-driving parameter,

cffects are found at constant velocity.

ur disprove these theoretical findings.

*

e = 0.581 x10°° (0.53 = K) V

i distribution Cp is first zero. In an effort to account for this experimental
) fact, the distance , was taken to be equal to 0.25¢ ~ {,. The length ¢,
was determined by measuring the distance from the minimum pressure
| point to that point where the pressure coefficient, Cp:
| the leading edge of the hydrofoil. These measurements gave lz/'ll =
! 14/11 so that (m = 1) = 1.27. These geometric relationships and the ap-
; proximating parabolic pre2ssure distribution are shown in Fig. 8. If one
i takes o = 70 dynes/cm. Roz 2 xiO.4 cm, p= 1 gram/cm3. b = 0.5%3,
the equation for the dimensionless time is

| r = 1.28x1¢® VL\[o.sa-x ,

By means of. the graph for v = F(a, Y), with Y = 1.0‘, trial &nd error
calculations weisc made to find X for values of the free stream velocity

V, of from 900 cm/sec to 3000 cm/sec for each of the three chord lengths,"
2 in. (5.08 cm), 4 in. and 8 in. The calculations were extended to infinite
velocity by means of Eq. (45) (for this case C = 550 c¢m).
i c = 4 in., the calculations were repeated for zero air content (y = 0).
these calculations, curves of incipient cavitation number K versus the ratio
c/Vo are given in Fig. 9. The calculated resuits are also compared with
experiment in Fig. 9. The experimental scatter is too great to draw any
definite conclusions as to the arnlicability of the theoretical results.
calculated curves show the tendency for the cavitation number to increase

| with velocity for all scales, and, except for the higher velocities, no scale
The data do not conclusively prove

Y = 1 corresponds to an initial bubble air pressure of 700 miliibars
or a dissolved air concentration of 70%, the saturation concentration for
an air pressure of 1| atmosphere above the water.
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Calculations for Incipient Cavitation ou the “"Hemispkeres"

Calculations were made for the inception of cavitation on right cylin~
drical bodies with hemispherical noses. The same body sizes were se-
lected as were used by R. 7, sermeen in hisa experiments (see Ref. 1).
Kermeen found that the dissolved air concentration in the water during his
experiments was abou! one-half of the saturation value for an air pressure
of ore stmosphere. The corresponding value of the air content parameter,
Y, was taken to be 0.7.

The experiments oi Rouseq show that b,
the absolute value of the minimum pressure
coefficient on the body, increases from about
0.65 at 2 Reynolds number of 0.6 x 10° to
0. 74 when the Reynolds number is greater
than or equal to 1.2 x 105. This cbange in
the minimum pressure, b, was accounted for
T in the determinations of the dimensionless

time, T, (Eq. 23) and of the bubble -driving
Fig. 10 parameter, o, (Eqs. 7 and 43). The "ara-
bolic' pressure distribution was fitted to the
experimental pressure distribution by seiecting for the pressure distribu-

CMENBONLESS TTREARLUNE DETARCES ALOND DODY.
L) oty

/

tion asymmetry factor, m, a value of 1.45. Figure 1C compares the ex-
perimental and the "parabolic" pressure distributions when the Reynolds
number is in the supercritical regime (R, == 1.2 x 105). Trial and error
calculations were then performed in the same fashion as for the Joukowski
hydrofoils. The calculations are compared with Kermeen's data in Fig. 11.
It will be seen that the calculated values of incipient cavitation number are
in poor agreement with experiment. The disparity between the experi-
mental and the calculated results increases.as the size of the body de-
creases. There are two possible reasons for the disagreement. Either
the mathematical approximations used in developing the theory are too
great, or some physically important effect (such as that due to the bound-
ary layer) has been overlooked. It may well be that both of these factors
contridbute to the large differences hetween theory and experiment.

It will be noticed in Fig. 11 that for the 2, 1-1/8 and 1/4 inch models
the experimental data for incipient cavitation number seem to show little

Cmmmoan e o
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or no dependence upon the free stream velocity, V,, when Vo is greater
than or equal to 80 ft per sec. This apparent independence of the incipi-
ent cavitation number with free stream velocity corresponds io the theo-
retical conditions leading to Eq. (46). Ecquation {46) relates the incipient

cavitation number to the characteristic body leagth of similar bodies

\ Y
& unde: the condition that the free

8 ]
x 5 : B e e stream velocity is very high. The
i - [ . . . 3 .
C ol {9 ° | , _| incipient cavitation number under
W v
3. /-’ | ' 1 _l this condition is said to have at-
20

y o EXPERIMENT W KERMEEN . . . .
3 . —EQ(46),FITTED AT d:025 —{ tained its limiting value. If it is
-
qQ —--EQ (46),FITTED AT d:200 . :
E st | | supposecd that the experimental
q .
J o2 S IT_J ...| data, for the highest free stream
z | . - -
H d_ | _| velocities measured, approximate
S NPy C
2 ol l l | ] such limiting values of the incipi-

0 2 4 5 8 W R W 1L 18 20
MODEL DIAMETER, 4. INCHES ent cavitation number, it is reason-
Fig. i: able to compare the experimental
a points for this case with Eq. (46).

The data for incipient cavitation »»mber on each model at the highest test
velocity were averaged and plotted against model diameter in Fig. 12.
Equation (46) wa. .'ca fitted to the experimental points twice at diameters
of 1/4 in. and 2 in., respectively. The two curves are shown in Fig. 12.
It will be seen that the agreement between experiment and theory is best
when the calcuiations are fitted to ine smallest model. The free stream
velocity in all ca.cs was at least 80 7t .~ . . crhaps data for even
higher values of YV, would give better agreement when the theory is com-
pared with experiment. More experirnents must be made to test this point.
The theoretical treads (Figs @ o=l !, seem %o indicate that the limiting
value for the incipient cavitation number will be attained for higher veloci-
ties, Voo for larzc bodies than ior small models. If this trend i1s correct
it means that most water tunnels cannot reach high enough speeds to make
use of this theoretical approximation when models with low pressure re-

gions larger than that of the two-inch diameter hemisphere are tested.

It will be recalled that in deriving Eq. (46), as with all other theo-
retical results, two basic approximations were macde. First, the pressure
was estimated from experimental results and Bernculli's Law. Second,

the time during which the nuclcus is exposed to a low pressure condition
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where bubble growth can occur was cstimated from the body length and the
liquid velocity along the body just outside the boundary layer. The appli-
cation of Bernoulli's LLaw should give quite accurate results. One raust
conclude, therefore, that the timec estimates are not good enough for the
present purposes. Furthermore, if one traces through the calculation
proceadure for the incengion of cavitation, he will find that underestimating
the time results in an underestimate of the cavitation number for incipient
cavitation. The present calculations do not account for the possibility that
at least a portion of the bubble growth occurs in the boundary layer where
the time available for growth would be greater than the tiine estimates
used here. Thus, before one can make predictions for the inception of
cavitation with confidernce, the boundary layer's effect ~n growing cavita-

tion bubbles must be understood.
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PART 111 é

CONCT USIONS™

It is found by experiment that ¢ 1vitation on submerged bcdies in a
rectilinear flow shows decided changes in its deveiopuncrnt 35 the free T
stream velocity and tody size are changed. It is found that under certain
conditions the incipient cavitation number depends on both body scale and
free stream velocity. Of these two effects, that due to changes in free
strearn velocity is the greater, and most of the monotonic increase in
incipient cavitation number with free stream velocity occurs below a free
stream velocity of 60 fps. In the velocity range between 30 and 60 fps the
cavitation number changes by about 25% of its maximum value. For ve-
locities above 60 fps tiie incipient cavitation number increases by less than
10% of its maximum: value. At constant velocity the incipient cavitation
number increases with scale. However, more work must be done before
truly quantitative results can be given for the scale effect at constant

velocity.

It was found that one cannot obtain useful scaling laws for limited
cavitation from similarity arguments. In fact, the similarity calculations
show that one may expect limited cavitation to be affected by both body size
and free stream vciucity. One is then lcd to conclude that the cavitation
number, K, is not the only significant parameter required to define the
limited cavitation flow regime. Both experiment and analysis indicate
that one must specify the model size, free streamn velocity, dissolved air
content and the cavitation number if he wishes to describe completely an
experimental situation for an immersed body of specified shape. The
condition of the body surface should also be specified, but this effect has
not been considered in this paper. Although it is convenient to use the
cavitation number, K, for theoretical calculations, one would be closer
to the physical relationships if, instead of the cavitation parameter, he

specified the liquid vapor pressure and the frce stream siatic pressure. ‘

From the lack of agreement between experiment and the greatly

simplified thenretical calculations presente” in this report, one can

“These cLaclusions summarize the results of both the preliminary
report(:) and the work prescnted in this paper.
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conclude that the neglect of the rolc of the boundary laver is not justified
for precise predictions of the ctfects of model scale and free strcam vo-
locity upon the ince.tion of cavitation. Further, the use of an arbitrary
tinal radius instcad of a specified maximum radius for the required babble
growth may have introduced an exiraneous variability in the calculations.
On the other hand, the qualitative agreemeni betwecn the experimental and
calculated trends for incipient cavitation number versus free siream ve-
locity and body size, substantiates the basic premise tha! scale effects in
limited cavitation arise becausc of transient pressure effects on the nuclei

in the liquid flow.

A combination of simplc theoretical considerations and some of the
experimiental data for incipient cavitation gives estimates for the effective
initial nucleus radius. It is found that for the water used in the experiments,

the calculated effective initial radius is between 10.4 and 10.3 centimeters.

For the limiting case where the free stream velocity approaches
infinity, it is found that the cavitation number, K, for incipient cavitation
does not approach b, the absolute valuc of the minimum pressure coef-
ficient on the submerged bedy. Instead, the limiting value of the incipient
cavitation number approaches a value less than b, and the difference,

b - K, is found to be inverscly proportional to the characteristic body
length, L. The thcory closcly approximates the experimental rcsults if
the ecquation is fitted to the data for the smallest model. More experi-

mental work 1s needed to demonstrate the complete validity of this result.
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